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CORE: Conservative 
Remapper
Martin Staley and Mikhail Shashkov (T-7)

Conservative Remapper, or CORE, 
is a C++ language software library 
for remapping cell masses and cell-
averaged densities on unstructured 

two-dimensional grids, maintaining 
conservation of total mass in the process. 
CORE contains implementations of two 
remapping algorithms: a new, efficient “swept-
region” algorithm and a more traditional 
algorithm based on the computation of cell 
intersections. Grids may be Cartesian or 
cylindrical, and cells may have three or more 
vertices, with no upper limit. CORE can 
run in serial and in parallel, but in order to 
achieve wide applicability, CORE uses no 
particular parallel communication library. 
Instead, it achieves parallel communication 
through strategically placed, user-defined 
callbacks. Users can also provide callbacks to 
redefine different parts, or subcomponents, 
of the remapping process. CORE allows the 
use of different data types, e.g., single, double, 
and quadruple precision floating-point 
numbers, through the use of C++ templates. 
Using CORE is simple and requires no 
configuration scripts or makefiles.

The swept-region remapping algorithm [1] 
achieves its goal by performing three steps: 
density reconstruction, mass exchange, and 
mass repair. This algorithm performs well 
if the new grid is a small perturbation of 
the old grid, and it is faster than the exact-
intersection algorithm.

For the density reconstruction step, consider 
that the mean cell densities obey some 
underlying, theoretical density function ρ. 
For the reconstruction step, we assume ρ is 
piecewise linear—one piece per cell—and 
then use our discrete mean densities to 
reconstruct ρ.

For the mass exchange step, consider that 
each edge has two adjacent cells. For a given 
edge, we identify which of these cells the edge 
“moves into” more when we go from the old 
grid to the new grid. We then integrate the 
cell’s reconstructed density function over the 
entire region swept by the edge’s motion. This 
gives us a mass, which is then removed from 
this cell and added to the cell on the other 
side of the edge.

Consider Fig. 1, where the old grid is drawn 
with dotted lines and the new grid with solid 
lines. When the edge illustrated in the figure 
moves from its original position to its final 
position, it sweeps the shaded region. So, we 
integrate Cell 5’s reconstructed linear density 
function over this region, giving a mass which 
is subtracted from Cell 5 and added to Cell 4.

For the mass repair step we recognize that 
the earlier, mass exchange step involved 
inexact integration, in that only one cell’s 
piece of the reconstructed density function 
(Cell 5’s piece in the figure) was considered, 
even though portions of the swept region 
intersect with other cells. Because of inexact 
integration, new masses in individual 
cells can conceivably violate local bounds. 
For example, a mass might be negative. 
The repair step fixes out-of-bounds masses, 
while conserving the total mass over the 
entire grid.

Figure 1—
Swept-region remap-
ping.

Figure 2—
Exact-intersection 
remapping.
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The exact-intersection remapping 
algorithm [2] begins with the same density 
reconstruction step used in the swept-region 
algorithm. However, the mass exchange step 
is now quite different. Consider Fig. 2, in 
which Cell 4 moves from its position on the 
old grid (dotted lines) to its position on the 
new grid (solid lines) as shown by the arrows. 
Exact-intersection remapping examines each 
of the grid’s cells. Cell 4 on the new grid 
intersects with Cells 1, 2, 4, 5, 7, and 8 on the 
old grid, as shown by the shaded regions in 
the figure. So, the algorithm computes Cell 4’s 
new mass by summing the integral of Cell 1’s 
reconstructed density function over Cell 4’s 
intersection with old Cell 1, the integral of 
Cell 2’s reconstructed density function over 
Cell 4’s intersection with old Cell 2, etc.

Although this algorithm no longer involves 
inexact integration, as the swept-region 
algorithm did, it still allows for a mass repair 
step in the event that masses fall outside user-
defined bounds.

The exact-intersection algorithm does 
not require that the new grid is a small 
perturbation of the old grid. Moreover, 
it allows the two grids to have different 
connectivities, whereas the swept-region 
algorithm only makes sense when the grids 
have the same connectivity. Figures 3 and 4 
illustrate this fact with a remap from a coarser 
grid to a much finer grid. Notice how the 
original grid’s relative coarseness is still visible 
in the remapped values on the finer grid.

[1] M. Kucharik, M. Shashkov, and 
B. Wendroff, “An Efficient Linearity-and-
Bound-Preserving Remapping Method,” 
J. Comp. Phys., 188 (2003) pp. 462–471.
[2] L. Margolin and M. Shashkov, “Second-
Order Sign-Preserving Conservative 
Interpolation (Remapping) on General 
Grids,” J. Comp. Phys., 184 (2003) 
pp. 266–298.

For more information, contact Martin Staley 
(mstaley@lanl.gov).

Figure 3—
Densities on the 
original, coarser grid.

Figure 4—
Remapped densities on 
the new, finer grid.
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